Automatic Identification of Arabic Dialects
نویسندگان
چکیده
In this work, automatic recognition of Arabic dialects is proposed. An acoustic survey of the proportion of vocalic intervals and the standard deviation of consonantal intervals in nine dialects (Tunisia, Morocco, Algeria, Egypt, Syria, Lebanon, Yemen, Golf’s Countries and Iraq) is performed using the platform Alize and Gaussian Mixture Models (GMM). The results show the complexity of the automatic identification of Arabic dialects since. No clear border can be found between the dialects, but a gradual transition between them. They can even vary slightly from one city to another. The existence of this gradual change is easy to understand: it corresponds to a human and social reality, to the contact, friendships forged and affinity in the environment more or less immediate of the individual. This document also raises questions about the classes or macro classes of Arabic dialects noticed from the confusion matrix and the design of the hierarchical tree obtained.
منابع مشابه
Using prosody and phonotactics in Arabic dialect identification
While Modern Standard Arabic is the formal spoken and written language of the Arab world, dialects are the major communication mode for everyday life; identifying a speaker’s dialect is thus critical to speech processing tasks such as automatic speech recognition, as well as speaker identification. We examine the role of prosodic features (intonation and rhythm) across four Arabic dialects: Gul...
متن کاملArabic Spoken Language Identification System (ASLIS): A Proposed System to Identifying Modern Standard Arabic (MSA) and Egyptian Dialect
There are millions of people in the world speak many languages. To communicate with each other it is necessary to know the language which we use. To do this operation we use language identification system. In general, Automatic Speech Recognition for English and other languages has been the subject of most researches in the last forty years. Arabic language research has been growing very slowly...
متن کاملGMM-Based Maghreb Dialect IdentificationSystem
While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker’s dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background...
متن کاملProsody as a distinctive feature for the discrimination of arabic dialects
The aim of the work to be reported here is to explore the utility of prosodic information in language identification and discrimination tasks. The purpose of this study is to see whether prosodic patterns can be considered as reliable acoustic cues for the discrimination of Arabic dialects by investigating, via a perceptual experiment, if listeners are successful in identifying the Arabic diale...
متن کاملArabic Dialect Identification
The written form of the Arabic language, Modern Standard Arabic (MSA), differs in a nontrivial manner from the various spoken regional dialects of Arabic – the true “native languages” of Arabic speakers. Those dialects, in turn, differ quite a bit from each other. However, due to MSA’s prevalence in written form, almost all Arabic datasets have predominantly MSA content. In this article, we des...
متن کامل